Introducción

You titrate both hydrochloric acid and ethanoic acid in turn with a standardized solution of sodium hydroxide and record the temperatures of the mixtures during the course of the titrations. In each case a plot of temperature against volume of acids will enable you to determine the maximum temperature rise, from which you calculate both the concentration of the acid and the enthalpy change of neutralization.

Procedimiento

Titulación de ácido clorhídrico con solución estándar de hidróxido de sodio

1. Usando un pipete y llenador, transfiera 50.0 cm³ de NaOH solución en el vaso de poliestireno. Deje reposar durante unos minutos.
2. Registre la temperatura del solución.
3. De un burette, añada 5.0 cm³ de HCl solución a la copa.
4. Remueva la mezcla con el termómetro y registre su temperatura.
5. Añada sucesivas porciones de 5.0 cm³ de HCl solución removiendo la mezcla y registrando su temperatura después de cada adición.
6. Registre sus resultados en una copia de la Tabla de Resultados 1. Detenga después del añadido de 50.0 cm³ de ácido.

Titulación de ácido acético con solución estándar de hidróxido de sodio

1. Siga el mismo procedimiento que hizo para la titulación de HCl, pero utilice ácido acético en la burette, cuando llena la burette, recuerde utilizar correctas operaciones de lavado.
2. Registre sus resultados en una copia de la Tabla de Resultados 2.

Tabla de resultados 1 Titulación de ácido clorhídrico

<table>
<thead>
<tr>
<th>Volumen añadido /cm³</th>
<th>0.0</th>
<th>5.0</th>
<th>10.0</th>
<th>15.0</th>
<th>20.0</th>
<th>25.0</th>
<th>30.0</th>
<th>35.0</th>
<th>40.0</th>
<th>45.0</th>
<th>50.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura /°C</td>
<td></td>
</tr>
</tbody>
</table>

Tabla de resultados 2 Titulación de ácido acético

<table>
<thead>
<tr>
<th>Volumen añadido /cm³</th>
<th>0.0</th>
<th>5.0</th>
<th>10.0</th>
<th>15.0</th>
<th>20.0</th>
<th>25.0</th>
<th>30.0</th>
<th>35.0</th>
<th>40.0</th>
<th>45.0</th>
<th>50.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura /°C</td>
<td></td>
</tr>
</tbody>
</table>

Cálculo

1. Plote la temperatura (eje y) contra el volumen de ácido añadido (eje x) para cada ácido en el mismo gráfico.
2. Extienda las secciones más rectas de las curvas cerca del tope, como se muestra en la figura. El punto en el que se encuentren corresponde al volumen de ácido requerido para neutralización y a la máxima temperatura.
3. Calcule la concentración de cada uno de los ácidos.
4. Desde la máxima elevación de temperatura, determine la cantidad de energía liberada en cada titulación, asumiendo que la capacidad específica de calor de las soluciones es la misma que para agua, 4.18 kJ kg⁻¹ K⁻¹ y que la capacidad de calor de la copa es cero.
5. Calcule el cambio estándar de entalpía de neutralización de cada reacción.

Discusión

1. La entalpía de neutralización de una disolución muy diluida de un ácido fuerte reaccionando con un base fuerte diluida es constante a −57.6 kJ/mol se refiere a un mol de agua producido. ¿Por qué es el valor constante?
2. Los resultados experimentales de ácido clorhídrico son usualmente un poco menos negativos que −57.6 kJ/mol. Sugerimos razones para este.